COFIRING COAL:FEEDLOT BIOMASS (CFB) and COAL:LITTER BIOMASS (CLB) in a B(R)OILER BURNER

PARTICIPANTS

Kalyan Annamalai , Prof, Mech. Engineering, Texas A&M

Dr. John Sweeten, Resident Director, Texas Ag. Ext. Center, Amarillo, TX

Sayeed Mukhtar, Asst. Prof., Agricultural Engineering, Texas A&M

Duration: 2000- 2002

DOE Biomass Meeting, NETL-Pittsburgh, Oct, 24, 2000

Students on Project

- Mr Ben Thien, PhD Student (Experiments)
- Mr Geng Sheng Wei, PhD Student (Numerical Modeling)
- Mr Scott Carrel, MS Student (supported from other ongoing Programs)

Background of Participants

- Kalyan Annamalai: More than 25 years of research on coal combustion and 15 years on feedlot biomass gasification and combustion; current program will supplement 2 other ongoing programs on Cofiring Coal:FB in Boiler burner
- John Sweeten: Extension service specialist over 30 years of experience on feedlot waste management and worked with KA over 15 years
- Sayeed Mukhtar: Poultry waste management specialist; current program will supplement "Odors and Arsenic Emissions from Polultry Operations

PROJECT PLANS or TASKS

- Tasks 1-3: Annamalai, (KA); Tasks 4: Sweeten (JS)and Mukhtar (SM)
- Task 1. Fundamental experiments on fuel characterization and combustion studies(KA)
- Task 2:Boiler burner experiments for cofiring of CFB and CLB fuels and reburn tests(KA)
- Task3.Fixed Bed studies on CFB and CLB(KA)
- Task 4. Numerical Modeling of pf fired and fixed bed burners (KA)
- Task 5. Fuel Collection, Transportation and Economic analyses (JS+SM)

Available Facilities

- B(R)OILER BURNER for suspension firing
- Flat Flame Burner Facility for fundamental studies
- PCGC 2 (with 3 mix fractions) and PCGC 3 (being modified with 5 mix fractions)
- Economic Analysis Software developed for CFB
- Spreadsheet Software for gas analyses, N to NO Conversion etc and equilibrium temp calculations for any fuel

TASK 1: FLAT FLAME BURNER FACILITY

TASK 2:TAMU-30 kW BOILER BURNER FACILITY

Sampling

Commercial Feeder

Exhaust

Coal:FB or LB Feed

15 cm dia burner Thermo couples

TEXAS A&M BOILER BURNER FACILITY

Task 3: FACILITY TO BE FABRICATED

Task 4: Numerical Computation of Co-Firing of Pre-blended Pulverized Coal and Poultry Waste

Gengsheng Wei and Kalyan Annamalai
Department of Mechanical Engineering
Texas A&M University

PROGRESS

- Task 1: Preliminary TGA Analyses performed on LB
- Task 4: Numerical Analysis performed with LB but with FB Kinetics
- Task 5: Economic Analyses: Preliminary study on Poultry Operations

Broiler Barn

'Cleaned Out' Poultry Litter

Wet Cake near waterers`

Table 2a: As Received Coal, Feedlot biomass (FB), Litter Biomass and blend Properties

Parameter	Coal	FB	LB*	90:10 coal:FB
Dry Loss	22.805	6.79	29.75	21.2035
Ash	5.445	42.29	13.64	9.1295
C	54.065	23.895	29.2	51.048
O	13.075	20.26	19.68	13.7935
Н	3.435	3.565	3.58	3.448
N	0.81	2.3	3.01	0.959
S	0.385	0.9	0.53	0.4365
Total	100.02	100		100.018
DAF	$CH_{0.755}O_{0.183}$	$CH_{1.774}O_{0.636}N_0$	$CH_{1.46}O_{0.505}N_{0.0883}$	
Formulae	$N_{0.0128}S_{0.0026}$	$.0825$ S $_{0.0141}$	$S_{0.00679}Cl_{0.0066}$	
`	21384 kJ/kg	9561.5 kJ/kg	11370 kJ/kg	20202 kJ/kg
	(9194 Btu/lb)	(4111 Btu/lb)	(4890)	(9016 Btu/lb)
FC	37.25	40.4		37.565
VM	34.5	10.52		32.102

^{*} LB analyses from Tillman and Playsinski

Task 1: TGA at 10°C/min; Dry % Basis

Estimation of Pyrolysis Start Temperatures: Feedlot Biomass TGA 10°C/min

Pyrolysis Start Temperatures

Single Reaction model

	E kJ/kmol	ko (1/min)
Coal	6370	.0832
Feedlot Biomass	1550	.0496
Litter Biomass	5420	.0977

Parallel Reaction model

	E _m kJ/kmol	σ	ko (1/min)
Coal	232200	48100	1.002E15
Feedlot Biomass	201400	57400	1.002E15
Litter Biomass	209100	62200	1.002E15

Task 4: Numerical Modeling: B(r)oiler Burner

$$f = \frac{m_p}{m_p + m_s}$$

$$h_1 = \frac{m_c}{m_p + m_s + m_c}$$

$$h_2 = \frac{m_m}{m_p + m_s + m_c + m_m}$$

 $m_p = mass \ of \ primary \ air$ $m_p = mass of primary are$ $<math>m_s = mass of secondary air$ $m_c = mass \ of \ coal \ off-gas$ $h_1 = \frac{m_c}{m_p + m_s + m_c}$ $m_m = mass of manure off-gas$ f = primary gas mixture fractionsf = primary gas mixture fraction $h_2 = \frac{m_m}{m_p + m_s + m_c + m_m} \qquad \begin{array}{l} \eta_1 = coal \ gas \ mixture \ fraction \\ \eta_2 = manure \ gas \ mixture \ fraction \end{array}$

In fact, volatiles have different composition than the parent fuel.

$$CH_{0.8}$$
 (coal)= 0.4 CH_2 +0.6 C (H/C)_{coal} = 0.8, (H/C)_{vol} = 2.0 $CH_{1.2}$ (manure) = 0.8 $CH_{1.5}$ +0.6 C (H/C)_{man} = 1.2, (H/C)_{vol} = 1.5

Temperature (K)

Molar Fraction of CO

EXPECTED ACCOMPLISHMENTS

Tasks 1-5

- Fundamental data on Fuel and TGA Analyses,
 Pyrolysis Kinetics of Coal, LB and FB, ignition and combustion characteristics
- Cofiring data Coal:FB and Coal:LB fuels
- Few Data on Fixed Bed Gasification/Combustion
- Numerical Modeling on Suspension Co-firing
- Economic Analyses and Feedback to industries including better waste management

TASKS 1 and 5/KA and SM

Proximate and Ultimate Analyses

- Feed Rations
- Broiler Manure
- Poultry Litter
- Litter without Manure
- Caked Litter and Composted Litter
- Heating Value

Task 2: Boiler Burner

- Reactor has been modified for Reburn Tests with Coal:FB
- Once Finished, we will start with Coal:LB cofiring

Task 3:Fixed Bed Gasification/Combustion Model: PROGRESS

- Progress
 - Formulation and numerical method are established
 - Coding is done
 - Tests and debugging are going on
- Problems and difficulties in calculation
 - Ignition and then extinction occur for low inlet air temperature
 - Instability occurs
 - Relaxation introduced into variables to be solved and source terms, though.

TASK-5/Mukhtar

Other Information

- Sources of Phosphorus and Chlorine in Litter
- Flow Chart for Entire Poultry Operation
- Location of Power Plants in Texas, and Proximity to Broiler Operations
- Energy Consumption for Broiler Houses

MILESTONES

SCHEDULE

Tentative Schedule of Tasks

Tasks				Months from the starting date					
	0	3	6	9	12	15	18	21	24
1						•			
2									
3									
4									
5									
O		X	X	X	X	X	X	X	
Final Rep									X

Some Future Applications

- Amarillo Power Plant
 - 2100 MW (elec), 8 mill tons coal/year
 - Economic Analyses (spreadsheet software)
 - blend fire rate, ash, dollar, CO2 savings, Maximum collectable radius
 - ash disposal problem
 - pave feedlots, similar tech-L
- TAMU (38 MW):
 - elec, chilled and hot water, gas fired; nearby
 Sanderson farms
- Pilgrims Point (data to be collected)
 - Pilgrims Poultry Farms